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Abstract

The ability to grow extra nodes is a potentially useful facility for a self-organising neural network. A network that can add nodes into its

map space can approximate the input space more accurately, and often more parsimoniously, than a network with predefined structure and

size, such as the Self-Organising Map. In addition, a growing network can deal with dynamic input distributions. Most of the growing

networks that have been proposed in the literature add new nodes to support the node that has accumulated the highest error during previous

iterations or to support topological structures. This usually means that new nodes are added only when the number of iterations is an integer

multiple of some pre-defined constant, l.

This paper suggests a way in which the learning algorithm can add nodes whenever the network in its current state does not sufficiently

match the input. In this way the network grows very quickly when new data is presented, but stops growing once the network has matched the

data. This is particularly important when we consider dynamic data sets, where the distribution of inputs can change to a new regime after

some time.

We also demonstrate the preservation of neighbourhood relations in the data by the network. The new network is compared to an existing

growing network, the Growing Neural Gas (GNG), on a artificial dataset, showing how the network deals with a change in input distribution

after some time. Finally, the new network is applied to several novelty detection tasks and is compared with both the GNG and an

unsupervised form of the Reduced Coulomb Energy network on a robotic inspection task and with a Support Vector Machine on two

benchmark novelty detection tasks. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Unsupervised learning techniques generate mappings

from input spaces of (usually) high dimension to lower-

dimensional map fields, often 2D. An example of such an

algorithm is the Self-Organising Map (SOM) of Kohonen

(1982, 1993), where a lattice of connected nodes learn a

representation of an input distribution. Networks such as the

SOM learn by adapting the weight vectors linking input

vectors from some input space to nodes in the map field. The

weight vector of the node that best matches each input is

moved closer to that input, as are nodes that are in the

neighbourhood of the winner. In this way, perceptions that

are ‘close’ in the input space are mapped to nodes that are

near each other in the map.

The SOM and similar networks have two major

limitations—firstly, the network structure and dimensional-

ity must be decided prior to learning. This constrains the

resulting mappings and the accuracy of the output.

Secondly, the capacity of the network is predefined through

the number of nodes in the network and the learning

parameters. This makes the networks unsuitable for

continuous learning or the learning of non-stationary

datasets.

Growing networks are one way to work around these

limitations of static networks. Many of the growing

networks described in the literature (see Section 2) add

either single nodes or whole layers of nodes into the network

structure at the position where the accumulated error is

highest, or to support topological structures. Nodes are only

added when the number of learning iterations performed is

an integer multiple of some pre-defined constant, l, as the

other iterations are needed to accumulate the error at each

node. Once a node has been added, several more iterations

of the learning algorithm are performed before another node

is introduced. Thus, the network grows at the same rate no

matter how the input distribution is changing. The network

continues to grow until the algorithm is terminated, often by
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a pre-determined stopping criterion, such as a minimum

error, being reached.

The network described in this paper uses a different

criterion for when to add a new node, and how to initialise

that node. Rather than adding a node to support the node

with the highest error, instead, nodes are added whenever

the current input is not matched by any of the current nodes

to some (arbitrary) accuracy, with the new node being

initialised to recognise the current input. This has the benefit

that once the input space is matched within some defined

error bound by the network nodes, the network will stop

growing, but will start to grow again if the input distribution

changes. We call the new network the Grow When Required

(GWR) network because of the property that new nodes are

added whenever the input is not sufficiently matched by the

current network.

The GWR algorithm decides when to add nodes by

evaluating the activity of the node that best matches the

current input, with good matches being signified by high

activity. It also uses information about how often that node

has fired previously. While the network is learning it may be

the case that the node that is the best match is still not

actually a good match (so that the activity is low). If this

node has not fired often it may be that the node is untrained,

and just needs further training. However, if the node has

often won, that is, been the node that best matches the input,

then the activity should be high, as the training will ensure

that the node matches the input well. If the activity of the

node is low, then a new node is needed to match the current

input, and so one is added.

In this paper we compare our new algorithm to one of the

standard algorithms, the Growing Neural Gas (GNG) of

Fritzke (1995). This network is described in more detail in

Section 2. In particular, we compare the learning abilities of

the networks for dynamic data sets. We first look at several

artificial datasets where the input distribution changes over

time, before applying the networks to a real problem, that of

novelty detection; detecting novel stimuli from robot sonar

readings. The results show that the GWR network performs

well on all of these problems, but that the GNG is not

suitable for novelty detection tasks because of the way in

which nodes are added. For this reason we use another

network that grows in use, but does not have neighbourhood

connections, a modified form of the Reduced Coulomb

Energy (RCE) network of Reilly, Cooper, and Erlbaum

(1982). This network is also described in Section 2. Finally,

we apply the GWR network to two benchmark novelty

detection tasks and report comparison results with a support

vector machine performing novelty detection.

It has been demonstrated that other growing neural

networks are perfectly topology-preserving (in the sense of

Bruske and Sommer (1995)), that is, the ordering of the

nodes in the network reflects the ordering of the nodes in

the input space. In general, this can only occur if the

dimensionality of the map space is the same as that of the

input space. We demonstrate that the GWR network is also

perfectly topology-preserving.

This work is motivated by previous work on novelty

detection (Marsland, Nehmzow, & Shapiro, 2000), where a

SOM was used on-line to cluster sonar readings taken while

a mobile robot explored. Habituation synapses connected

each of the nodes of the map field to an output node. The

synapses weakened when the node they were attached to

was the winner, so that stimuli that were seen more

frequently gave weaker signals to the output node. As the

habituation dynamics only had a fixed point where the

synapse was fully depleted, and the number of nodes in

the network is predefined, the network was able to saturate,

so that novel features were classified as previously seen. The

network described in this paper is designed to rectify this

fault.

2. Related work

The Cascade-Correlation Learning Architecture (CCLA)

(Fahlman & Lebiere, 1990) is a supervised learning network

that aims to substantially speed up learning. Like most of the

growing networks described in this section, CCLA starts

with a minimal network and adds units into the network

architecture. However, unlike most of the networks

described here, CCLA is a supervised network and nodes

are added into the hidden layers of the network. The new

units are intended to act as feature detectors and are added

when no error reduction has occurred over several training

iterations. The candidate unit is created and its input weights

are trained to maximise the correlation between the output

of the node and the residual output error before the node is

added to the network. Once the node is added, these weights

are frozen.

One of the first unsupervised growing neural networks

was the Growing Cell Structure (GCS) network of Fritzke

(1994). In the GCS, which is based on the SOM (Kohonen,

1982), the network is made out of k-dimensional simplices.

The value of k is pre-defined, and is usually k ¼ 2; so that

the simplices are triangles. A new node is inserted every l

iterations, where l is a constant, with the node positioned to

support the node that has accumulated the highest error

during previous steps. The network continues to adapt and

grow until some stopping criterion is met. This can take the

form of a prescribed network size, or some acceptable

minimum for the accumulated error in the network. The

GCS is one of a number of networks that are perfectly

topology-preserving (Bruske & Sommer, 1995), in that if k

is the dimension of the manifold on which the data lies, the

positions of the map nodes conform to the topology of the

input space.

A number of authors have proposed variations on the

GCS. For instance, Burzevski and Mohan (1996) suggest a

way of dealing with the changes in the network structure

that deleting nodes can have on the GCSs network. The
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constraint of the network structure always being a collection

of k-dimensional simplices can mean that deleting a node

can cause massive upheaval in the network. This problem

can be removed by using a hierarchy of GCSs arranged in a

tree. The algorithm is extended to allow nodes to split, so

that further branches can be formed. For particular data sets

this is shown to produce superior results to the basic

algorithm, but at the cost of many more nodes and a more

complicated structure. Another network, the Dynamic Cell

Structures, was proposed by Bruske and Sommer (1994,

1995). In this model, the addition of nodes into the network

is aimed at maintaining the topology preserving structure of

the network, rather than equalising the expected value of the

error at each node, as in the GCS.

A different approach is the Probabilistic GCS of Vlassis

(1997). This resets the GCS into a probabilistic framework,

the principal advantage of which is to allow an improvement

in the way in that the algorithm handles inputs which are

correlated. Again, the work of Cheng and Zell (1999, 2000),

has considered improvements to the basic structure of the

GCSs algorithm. Their work allows for more than one node

to be added at each insertion step. One, two or more neurons

can be added at each insertion step, depending upon the

topological structure of the network around the position of

the winning unit. This aims to improve the rate of

convergence of the network, although at the cost of using

more nodes.

In addition to the GCS, Fritzke (1995) has also proposed

the Growing Neural Gas (GNG). This network has a lot in

common with the Neural Gas model of Martinetz,

Berkovich, and Schulten (1993). As in the GCS, new

nodes are added every l iterations, to support the node with

the highest accumulated error, but in the GNG the structure

of the network is not constrained, with links being created

between the two nodes with the highest activity for each

input. For each data sample presented to the network, the

two best-matching nodes are selected, that is the two nodes

whose weights are closest to the input in the Euclidean

sense. A neighbourhood connection is made between the

two nodes if it does not already exist, and the positions of

these nodes—together with the neighbours of the winning

node—are moved so that their weights better match the

input. Edges that are not used increase in age, while edges

that are used have their age reset to zero. Once the age of an

edge exceeds a threshold, that edge is deleted. After l

iterations, the node that has accumulated the highest error

during the previous steps is calculated, and a new node is

added to support it. The new node is positioned between the

node with the highest error and whichever of its neighbours

has the next highest error. The algorithm continues until

some stopping criterion is reached. A number of works have

compared the performance of the GCS and GNG algorithms

for particular data sets. Examples are Fritzke (1996) and

Kunze and Steffens (1995).

Fritzke (1997) has also investigated modifying the

network so that it can be applied to non-stationary datasets,

as we do in this paper. This is done by adding the concept of

the ‘utility’ of a node, the amount that the global error would

increase if that node were removed. Nodes with low utility

are removed by the algorithm, which is known as the

Growing Neural Gas with Utility (GNGU).

Other networks that have been proposed include that of

Blackmore and Miikkulainen (1993), who proposed an

incremental growing grid, where nodes are added to the

perimeter of a grid that grows to cover the input space.

Connections between adjacent nodes are created and

destroyed according to the distance between their weight

vectors. This ensures that the network is always a regular 2D

structure, making it easy to view. Similar considerations

drove the work of Seiffert and Michaelis (1997), except that

they use 3D map fields.

An alternative approach is taken by Bauer and Villmann

in the Growing Self-Organising Map (Bauer & Pawelzik,

1992; Bauer & Villmann, 1995; Villmann & Bauer, 1998).

Their algorithm uses the learning rule of Kohonen’s Self-

Organising Map (Kohonen, 1982), but after each learning

stage, again every l iterations, neurons are added into the

map space. Rather than adding one node at a time, and

allowing connections between neurons to develop in the

learning phase, entire rows of neurons are created

simultaneously so that the rectilinear structure of the SOM

map space is maintained. The algorithm chooses whether to

add a new row or column, or to extend the map field into a

new dimension, according to the appearance and dynamics

of the Voronoi cells of the current network. The ability of

the network to preserve neighbourhoods in the data, so that

there is some topological consistency between the data in

both the input and map spaces—a noted property of the

SOM—is considered.

Another form of growing network grows new nodes

without generating neighbourhood relations between the

nodes, to perform categorisation. The simplest of these is

the unsupervised RCE network (Kurz, 1996; Reilly et al.,

1982), which uses prototype vectors to describe particular

classes. If none of the current prototype vectors are

sufficiently close to the current input, a new class is

generated and the input used as the prototype for that

cluster. There are no neighbourhood connections between

clusters, nor can prototypes move once they have been

placed. A more complex example of this type of network is

the Adaptive Resonance Theory network (ART) (Carpenter

& Grossberg, 1988). The ART network also adds new

categories when a mismatch is found between the current

input and the current set of categories, with the degree of

mismatch allowed being controlled by a parameter known

as the vigilance parameter.

An alternative approach is the Contextual Layered

Associative Memory (CLAM) of Thacker and Mayhew

(1990), which uses a multi-layered network that has

feedback between the layers and resonance within a layer.

Patterns are classified over a group of nodes rather than

using a winner-takes-all approach. Nodes are added when
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the probability measure indicates that the region of input

space that the current input comes from has low density.

Finally, an approach that does not consider self-

organisation, but that has other similarities to the work

considered here is that of Roberts and Tarassenko (1994),

which is aimed at novelty detection, an application that is

considered in Section 6. A Gaussian mixture model, a

method of performing semi-parametric estimation of the

probability density function is used to learn a model of

‘normal’ data from a training set. The number of mixtures is

not defined in advance, with new mixtures being added if

the mixture that best represents the data is further from the

input than some threshold. In testing, any input that would

require a new mixture to be generated is considered to be

novel.

3. The Grow When Required network

This section describes the GWR network. Details of the

algorithm are given in Section 3.1. The network has two

important components—the nodes, with their associated

weight vectors, and the edges that link the nodes to form

neighbourhoods of nodes that represent similar perceptions.

Both the nodes and edges can be created and destroyed

during the learning process.

The technique used for creating and destroying network

edges is the competitive Hebbian learning method used by

Fritzke (1995) and Martinetz and Schulten (1991). For each

input an edge connection is generated between the node that

best matched the unit and the second-best matching unit.

These edge connections have an associated ‘age’. This is

originally set to zero, and is incremented at each time step

for each edge that is connected to the winning node. The

only exception is the edge that links the best-matching and

second best units, whose age is reset to zero. Edges whose

age exceeds some constant amax are removed. Any node that

has no neighbours, i.e. that has no edge connections, is

removed, as it is a dead node.

The new part of the algorithm is the way that the growing

process is carried out. Rather than adding a new node after

every l inputs, as in the GNG network, new nodes can be

added at any time. For example, several may be added one

after another and then no more added for the next hundred

iterations. The new nodes are positioned dependent on the

input and the current winning node, rather than adding them

where the accumulated error is highest, as in Fritzke’s GNG

algorithm.

A new node is added when the activity of the best-

matching node (which is a function of the distance between

the weights of the node and the input, see Eq. (6)) is not

sufficiently high. The activity of nodes is calculated using

the Euclidean distance between the weights for the node and

the input. To allow for the fact that recently created nodes

may not yet have been trained to match their intended output

correctly, which would mean that the node should be trained

more rather than a new node created, each node is equipped

with a way of measuring how often the node has fired. This

could be done in a variety of ways, the simplest of which is

to use a simple counter for each node, which is incremented

whenever that node is the best match.

An alternative to using the simple counter to record how

often each node has fired is to have a variable that decreases

exponentially from 1 to 0, so that new nodes have a value of

1 and nodes that have fired frequently are close to 0. This is

equivalent to a counter with an upper limit, but has a few

benefits. The fact that neighbours of the winning node are

also trained can be acknowledged, as their variables can also

decrease, although to a lesser extent. Also, the number of

times that a node has fired can be very easily taken into

account in the learning rate (see Eq. (11)), so that nodes that

have fired frequently are trained less. This removes a

problem that networks that learn continuously often suffer

from, the weights of well-trained nodes continue to move

slightly, so that the network does not converge. As with

most self-organising networks, the setting of the learning

rates is usually based on prior experimentation. Finally, it

means that the GWR network can be used as a novelty filter

without any modification, if the node that fires has not fired

before, or fired very infrequently, then the input is novel (see

Section 6). In animals, this decreasing response to a

stimulus is known as habituation (Kohonen, 1993).

So, when an input is presented to the network, the

activity of each node in the map space is calculated and a

winner picked. If this best-matching node represents the

input well then the activity of that node will be close to 1

(calculated using Eq. (6)). In that case the best-matching

node is trained a little, as are its neighbours. However, if the

activity of the network is below the insertion threshold aT;

then either the node has only recently been added to the map

and is still being trained, or there is a mismatch between the

node and the input. If the node is a new one then the firing

counter for the node will be high, and so the node is trained a

little and the counter decreases. Otherwise, a new node is

needed to represent the input better. This node is added

between the (badly matched) winning node, which caused

the problem, and the input, with the weights of the new node

being initialised to be the mean average of the weights for

the best-matching node and the input. This method of node

generation, and in particular the insertion threshold aT; can

be thought of as tunable generalisation; the amount to which

the network generalises between similar perceptions is

controlled by the amount of discrepancy between percep-

tions that triggers a new node.

In addition to the insertion threshold described pre-

viously, a threshold is also required to decide at what level

of firing an input is considered to be sufficiently trained, so

that low activity signifies a mismatch. In practise, the value

of this threshold does not seem to affect the behaviour of the

network significantly. Using the exponentially decreasing

function suggested in Eq. (14), the threshold was set so that
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if a node had fired five times then it was considered to be

trained.

The value of the insertion threshold aT does make a

large difference, however. If the value is set very close to 1

then more nodes are produced and the input is represented

very well. For lower values of aT fewer nodes are added.

The effects of changing the parameter are investigated in

Section 5.

3.1. The GWR algorithm

We now detail the precise steps of the algorithm. In order

to facilitate comparisons, the new algorithm is described

using the same notation as used in Fritzke (1995) to describe

the GNG.

Let A be the set of map nodes, and C , A £ A be the set

of connections between nodes in the map field. Let the input

distribution be pðjÞ; for inputs j: Define wn as the weight

vector of node n.

Initialisation. Create two nodes for the set A

A ¼ {n1; n2}; ð1Þ

with n1; n2 initialised randomly from pðjÞ: Define C, the

connection set, to be the empty set

C ¼ Y: ð2Þ

Then, each iteration of the algorithm looks like this:

1. Generate a data sample j for input to the network.

2. For each node i in the network, calculate the distance

from the input kj2 wik.
3. Select the best matching node, and the second best, that

is the nodes s; t [ A such that

s ¼ arg min
n[A

kj2 wnk: ð3Þ

and

t ¼ arg min
n[A= sf g

kj2 wnk; ð4Þ

where wn is the weight vector of node n.

4. If there is not a connection between s and t, create it

C ¼ C < {ðs; tÞ}; ð5Þ

otherwise, set the age of the connection to 0.

5. Calculate the activity of the best matching unit

a ¼ expð2kj2 wskÞ: ð6Þ

6. If the activity a , activity threshold aT and firing

counter , firing threshold hT then a new node should

be added between the two best matching matching

nodes (s and t)
* Add the new node, r

A ¼ A < {r}: ð7Þ

* Create the new weight vector, setting the weights to be

the average of the weights for the best matching node

and the input vector

wr ¼ ðws þ jÞ=2: ð8Þ

* Insert edges between r and s and between r and t

C ¼ C < {ðr; sÞ; ðr; tÞ}: ð9Þ

* Remove the link between s and t

C ¼ C={ðs; tÞ}: ð10Þ

7. If a new node is not added, adapt the positions of the

winning node and its neighbours, i, that is the nodes to

which it is connected

Dws ¼ eb £ hs £ ðj2 wsÞ ð11Þ

Dwi ¼ en £ hi £ ðj2 wiÞ; ð12Þ

where 0 , en , eb , 1 and hs is the value of the firing

counter for node s.

8. Age edges with an end at s

ageðs;iÞ ¼ ageðs;iÞ þ 1: ð13Þ

9. Reduce the counter of how frequently the winning node

s has fired according to

hsðtÞ ¼ h0 2
SðtÞ

ab

�
1 2 eð2abt=tbÞ

�
ð14Þ

and the counters of its neighbours (i)

hiðtÞ ¼ h0 2
SðtÞ

an

�
1 2 eð2ant=tnÞ

�
; ð15Þ

where hiðtÞ is the size of the firing variable for node i, h0

the initial strength, and SðtÞ is the stimulus strength,

usually 1. an;ab and tn; tb are constants controlling the

behaviour of the curve. The firing counter of the winner

reduces faster than those of its neighbours. The values

used in the experiments were: h0 ¼ 1; ab ¼ 1:05; an ¼

1:05 and tb ¼ 3:33; 14:3: Eq. (14) is the solution to the

differential equation

tb

dhsðtÞ

dt
¼ ab½h0 2 hsðtÞ�2 SðtÞ; ð16Þ

which is the model of how the efficacy of an habituating

synapse reduces over time proposed by Stanley (1976).

This has been used in previous work on novelty

detection (Marsland et al., 2000).

10. Check if there are any nodes or edges to delete, i.e. if

there are any nodes that no longer have any neighbours,

or edges that are older than the greatest allowed age, in

which case, delete them.

11. If further inputs are available, return to step (1) unless

some stopping criterion has been reached.
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4. Measures of network performance

This section discusses the properties of the self-

organisation and learning processes taking place as the

GWR network learns. Section 4.1 introduces the notation

that is used in the discussion, neighbourhood preservation is

discussed in Section 4.2, and three different measures that

have been proposed in the literature to measure it are

described. However, neighbourhood preservation is not the

only way to evaluate the performance of the mapping learnt

by a network. The accuracy with which the network models

the data and the length of the neighbourhood connections

are also possible measurements. Measures of these proper-

ties are described in Section 4.3. These different measures

are evaluated when the GWR network learns represen-

tations of a number of different datasets in Section 5.

4.1. Notation

This section introduces the notation that is generally used

in the literature on self-organisation and topology

preservation.

A network A comprises N nodes and receives inputs

sampled from a data manifold M , Rd: Every node i in A

has a synaptic weight vector wi [ Rd: The representation of

M formed in A is defined by the mappings MA ¼

ðCA!M ;CM!AÞ; the mapping from M to A and its inverse,

which are defined by:

MA ¼
CM!A : M ! A; v [ M 7! ipðvÞ [ A

CA!M : A ! M; i [ A 7! wi [ M

(
: ð17Þ

where ipðvÞ is the map unit with weight vector wipðvÞ closest

to v. A connection matrix C is defined on the network A by

putting non-zero matrix entries between nodes that are

connected in the network, i.e.

Cij ¼
1 if i and j are connected

0 otherwise

(
: ð18Þ

4.2. Measuring neighbourhood preservation

The preservation of neighbourhood relations (also known

as topology preservation) is a very useful property of self-

organising networks and has attracted a great deal of

interest. Particularly useful papers are Goodhill and

Sejnowski (1997), Martinetz and Schulten (1994) and

Villmann, Der, Herrmann, and Martinetz (1997).

Loosely speaking, a mapping preserves neighbourhood

relations if nearby points in input space remain close in the

map space. This has been formalised by Martinetz (1993),

through the definition of the perfectly topology-preserving

map. A mapping between input manifold and network is

perfectly topology preserving if and only if connected nodes

i; j that are adjacent in A have weight vectors wi;wj adjacent

in M.

In general, a network can only perform a perfectly

topology-preserving mapping if the dimensionality of the

map space reflects the dimensionality (or at least, the

intrinsic dimensionality) of the input space. This is

demonstrated in Fig. 1. At the bottom of the figure, three

different square-shaped manifolds M are shown. Only in

Fig. 1(b), where the dimensionality of the map space and

input space are the same, can a perfectly topology-

preserving map be generated between M and A. For this

reason, for a network to be perfectly topology preserving it

is necessary for the network to evolve to reflect the

dimensionality of the dataset, or have this dimensionality

preset.

The question of how topology preservation can be

measured has received a lot of attention. Several authors

Fig. 1. Networks A of three different dimensionalities receive mappings from a square-shaped manifold M. Only in (b) where the dimensionality of the

manifold M and map A are the same is a neighbourhood preserving map generated. Adapted from Martinetz and Schulten (1994).
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have described ways of quantifying neighbourhood preser-

vation. These can be split into two categories—measures of

similarity and measures of similarity ordering. In the first

class are those measures that evaluate the similarity of pairs

of points before and after the neighbourhood mapping, and

require that the two similarity measures are at least

correlated, while in the second class it is only required

that the relative ordering of the similarities is preserved. A

useful review is given by Goodhill and Sejnowski (1997).

Two interesting measures are the C measure (Goodhill &

Sejnowski, 1997), which requires that symmetric similarity

measures are defined both ways between the input space M

and the map space A, usually as the Euclidean distances, and

the topographic product P (Bauer & Pawelzik, 1992), which

evaluates the neighbourhood preservation by computing the

distance between neighbours in both the map space and the

input space. However, the most useful measure that has

been proposed, because it can deal with non-linear data

manifolds, is the topographic function, which is described

next. This measure is used in Section 5, as are some

measures that are proposed for the new network, which are

described in Section 4.3.

4.2.1. The topographic function FM
A (Villmann et al., 1997)

The topographic product is limited to linear data

manifolds, as the neighbourhood relations are measured

using the Euclidean metric within the embedding space of

the weight vectors. A way around this problem is proposed

by the topographic function, which evaluates the topology

preservation of the SOM mapping taking the structure of the

data manifold into account using the Delaunay triangulation

induced onto it by the mapping. The neighbourhood

preservation of the mappings CM!A and CA!M are denoted

by fjðkÞ and fjð2kÞ; respectively, with j being the index of

the node in the map and k ¼ 1;…;N 2 1: The topographic

function Fm
A of map MA is then defined by

FM
A ðkÞ ¼

1

N

X
j[A

fjðkÞ k , 0

FM
A ð1Þ þFM

A ð21Þ k ¼ 0

1

N

X
j[A

fjðkÞ k . 0

8>>>>>>><
>>>>>>>:

ð19Þ

FM
A ð0Þ ¼ 0 if and only if the map is perfectly topology-

preserving.

The question is then how to compute the neighbourhood

preservation functions fjðkÞ and fjð2kÞ: The basic approach

is to use the induced Delaunay triangulation, that is, the

graph connecting points with adjacent Voronoi polyhedra.

In the form given by Martinetz and Schulten (1994) the

topographic function is only specified for rectangular

lattices. This means that they are not applicable to the

GWR network and other networks where the network

structure is not of this form. For the topographic function the

problem is in the measurements of fiðkÞ and fið2kÞ: A

description of how these measurements can be made more

general is given by Villmann et al. (1997), and is developed

further here.

The structure of A is defined by the connectivity graph C

that is generated by the competitive Hebbian rule (see Eq.

(18)). A discrete topology (Berge, 1997) can be induced on

this space using the graph metric in CðiÞ; where CðiÞ is C

with node i taken as the root. A second discrete topology can

be induced on A by considering the graph metric of the

Delaunay graph, DðiÞ; again with node i taken as the root.

These two topologies are referred to as T2
A ðiÞ and Tþ

A ðiÞ;

respectively.

A neighbourhood topology also needs to be induced on

the data manifold M, or at least that subset of it MA ¼

{wi [ Rdli [ A}: By generating the Voronoi diagram of M

using MA and constructing the dual Delaunay graph of this

D, the required topology (labelled TMA ) is induced.

Thus, three discrete topological spaces have been

created, two on A 2 ðA;T2
A ðiÞÞ and ðA;Tþ

A ðiÞÞ; and one on

MA; ðMA;TMA ðiÞÞ: The map MA ¼ ðCA!M ;CM!AÞ can then

be defined as topology preserving if the maps CM!A and

CA!M are both continuous mappings for all nodes i [ A; on

their respective topological spaces

CM!A : MA
; TMA ðiÞ

	 

! A;T2

A ðiÞ
� �

ð20Þ

CA!M : A;Tþ
A ðiÞ

� �
! MA

;TMA ðiÞ
	 


: ð21Þ

Using these relations, general forms for fiðkÞ (which

measures the continuity and hence the neighbourhood

preservation of CM!A) and fið2kÞ (which does the same

for CA!M) can be derived, and are given below:

fiðkÞ ¼ # jldT2
A
ðiÞði; jÞ . k; dT

MA ðiÞði; jÞ ¼ 1
n o

ð22Þ

fið2kÞ ¼ # jldTþ
A
ðiÞði; jÞ ¼ 1; dT

MA ðiÞði; jÞ . K
n o

; ð23Þ

where #{·} is the cardinality of the set, k ¼ 1;…;N 2 1 and

dTðiÞði; jÞ is the distance metric based on each of the

topologies. These measurements can then be used in Eq.

(19) and the topology preservation of the mappings learnt by

the GWR network measured.

Evaluating the topographic function is a computationally

expensive task, as the Delaunay triangulation has to be

computed and then the graph of connections between

datapoints has to be created and searched. The topological

function has been evaluated for some of the datasets that are

described in Section 5, and the results are given there.

4.3. Further performance measurements

The measurements described in the previous section

aimed to evaluate the topology preservation of self-

organising networks. This is only one of the properties

that a network mapping should display. In this section two

complementary cost measures are described that aim to

evaluate the mapping between input space and map space
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generated by the algorithm. Any number of cost measures

that evaluate the desired properties can be generated, these

particular ones were chosen for their simplicity.

The two measures represent a trade-off between a

complex network with many nodes that represents all

possible inputs very accurately and an efficient network that

generalises well.

The network should be as parsimonious as possible,

meaning that the length of edges should be short and the

number of nodes small, but equally the network of nodes

much accurately model the data, so that the distance

between an input and the node that best represents it should

be small. The cost measures evaluate each of these aims

separately. The first measure, E1; given in Eq. (24),

penalises the network for neighbourhood connections

between nodes that are placed far apart on the graph:

E1 ¼
X

i

X
j,i

CijGði; jÞ; ð24Þ

where the sum is over all the nodes in the network, and C is

the connection matrix defined in Eq. (18). For the

implementation used in Section 5, Gði; jÞ ¼ kwi 2 wjk
2
; the

Euclidean distance. The second measure, E2; given by Eq.

(25), shows how the network aims to minimise the distance

between each data point dm and the node that best represents

it, w:

E2 ¼
X
m

X
i

Gðd;wÞ·fiðdm; {w}Þ; ð25Þ

where the first sum is over each element of the dataset, and

fiðd; {w}Þ ¼
e2nGðdm ;wiÞX
j

e2nGðd;wjÞ
: ð26Þ

In the limit as n!1; this reduces to winner-takes-all,

which is the implementation that is used in the results

reported in the next section. With this winner-takes-all

implementation, the measure would be optimised by k-

means clustering (Luttrell, 1990).

Measure E1 would be minimised if the network had no

connections at all, while E2 would be minimised if there was

a node for every input pattern. It is in the simultaneous

minimisation of the two measures that a good mapping is

produced. As the number of nodes in the network is variable

and the connectivity pattern is unconstrained, it is difficult,

if not impossible, to find criterion functions that cannot be

trivially optimised (that is, a network with a node on every

input and no connections between nodes) for growing

networks. In the absence of a probability model some

heuristic is required to avoid this trivial solution.

5. Experimental results on simple data

This section demonstrates the performance of the

network on a number of demonstration problems. The

first is a very simple 2D artificial dataset designed to

show how the algorithm learns. The next is an example

used by Fritzke (1997) to demonstrate the GNGU. The

GNGU network uses the idea of the utility of a node,

being the amount that the error in the network would

rise if that node were deleted, to decide whether a node

was superfluous. This allows the network to track non-

stationary datasets. We compare the GWR algorithm

with the GNGU. For these two problems we evaluate

the two cost functions described in Section 4, and also

the topographic function. Then we demonstrate the

topology preservation using the well-known two-spirals

problem, and demonstrate the ability of the network to

represent the dimensionality of the input distribution

using a dataset where the input manifold varies in

dimensionality.

In Section 6 we apply the GWR network to some real

problems based on the task of novelty detection, first on a

robotic inspection task and then on medical diagnosis and

machine fault detection.

5.1. A very simple dataset

The first, simple, dataset is made by a data distribution

where samples are drawn at random from the unit square,

with inputs coming with non-zero probability from four

squares within the input space and a straight line joining two

of the squares. This can be seen in the top left picture of

Fig. 2, which shows the behaviour of the network at

intervals of 40 samples drawn from the input distribution.

The positions of the weights vectors of the nodes are plotted,

together with lines linking those nodes that have neighbour-

hood connections.

The figure shows that the network creates new nodes

very rapidly initially—during the 40 data presentations

38 additional nodes are created, with three more made

during the second 40 presentations, and only one more

being created after this. Instead, the weights of the

nodes are adjusted to form a better representation of the

data, and extra edges produced by the growing process

are pruned. After 240 samples the network has learned

the dataset accurately, and the network does not change

at all after that.

Fig. 2 also shows that the GWR network is topology

preserving. In the squares, where the data is 2D, the network

forms a 2D representation, whereas on the line that joins two

of the squares, which is 1D, the neighbourhood structure of

the network reflects this. This is shown again in Fig. 3,

which shows the values of the cost measures described in

Section 4 as the number of presentations of data to the

network increases.

The first cost function measures the length of the

connections between nodes. It can be seen that for both

the GWR and GNG networks this value increases as nodes

are added into the map field, but that it then decreases to an

approximately constant value when the network stabilises.
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The second cost measure, which evaluates the distance

between each datapoint and the corresponding node, shows

similar results—the mapping decreases very rapidly to a

constant level. This level is obviously controlled by the

insertion threshold aT: For the GWR network the second

error function is fixed after 80 data presentations because no

new nodes are added to the map and the nodes do not move.

For the GNG network the value continues to decrease,

because a new node is added at regular intervals. At the

point where the GNG and GWR networks have the same

number of nodes the cost function is lower for the GWR

network. The topographic function for the GWR network is

Fð0Þ ¼ 0:0023:

The network shown in Fig. 2 was computed used a

value of the insertion threshold aT ¼ 0:99: Table 1

shows the effect of this parameter on the number of

nodes that the network produces, and the number of

samples that were presented before the network stopped

adding nodes. It can be seen that only for very high

values of the parameter does the network take a large

number of samples to stabilise.

5.2. A non-stationary dataset

Fritzke (1997) demonstrated the GNG with Utility using

a dataset where the distribution changed rapidly while the

network was learning. He showed that the GNG without

utility failed to track the change in the dataset, leaving dead

nodes behind, but that the GNGU successfully tracked the

change in distribution.

Initially the inputs come from two squares, located in the

top-left and bottom-right corners of the unit square, as can

be seen on the left of Fig. 4. At some later time the

distribution changes so that inputs are now sampled from

the top-right and bottom-left corners of the square, as can be

seen in the third and fourth pictures of Fig. 4.

Figs. 4 and 5 show how the GNGU network and GWR

network learn a representation of this dataset. Each epoch,

or iteration through the dataset, consists of 200 inputs

sampled from the data distribution. At the end of each epoch

the GNGU network added a new node in the usual way. The

distribution was changed after 40 epochs (8000 samples), as

can be seen in the figures. As Fritzke did, we constrained the

Fig. 2. The GWR Network learns a dataset consisting of four squares and one line. The top left diagram shows the layout of the dataset, the grey squares being

the areas from which data can be sampled with non-zero probability. The other diagrams show the positioning of nodes and edges while the network learns.

a
T
¼ 0:99: Initially the network consists of two nodes places at random within the space. It can be seen that where the input is 2D, the structure of the network is

2D, and where the input is 1D, the network reflects this.

Fig. 3. Evaluation of the two cost measures described in Section 4.3 against the number of data samples for the GNG and GWR networks while the networks

learn the four squares dataset. The GWR network performs better on the E1 measure, concerned with the length of neighbourhood connections, but appears to

perform less well on E2, which measures the accuracy of the mapping. This is because the GNG network continues to add nodes. At the point where the two

networks have the same number of nodes the GWR network has a lower value of E2.
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size of the networks to be no bigger than 30 nodes, although

for the value of the insertion threshold used here

(aT ¼ 0:95) the GWR network did not reach this size. The

values of the different parameters were set to be the same for

both networks using the values suggested in Fritzke (1997).

In particular, the learning rates were eb ¼ 0:05 for the

winning node and en ¼ 0:0006 for its neighbours.

Comparing Figs. 4 and 5 shows that the GWR network

grows a simple solution very rapidly, while the GNGU is

still changing the position of the nodes to produce a sensible

ordering. When the distribution changes, which occurred

immediately after the second picture in each of the figures,

the GWR network very rapidly repositions the nodes as well

as growing some additional nodes. This means that after

another 4000 data samples the network already represents

the data fairly well. The GNGU on the other hand, requires

further training to delete a few superfluous nodes. Fig. 6

shows the evaluation of the two cost measures on the

performance of both networks. Again, the two networks

both perform well. In both cost measures it can be seen that

the cost increases when the change in the network

distribution is made. This is to be expected, as at that

point the network is completely wrong about the input

distribution. However, both networks recover fairly quickly

and return to something like the same level as for the

original data distribution. For the GWR network Fð0Þ ¼

0:001:

5.3. The two-spirals dataset

The two-spirals dataset is a benchmark dataset available

in the CMU repository. Originally intended for supervised

learning, the dataset comprises two interleaved spirals, as is

shown in Fig. 7. Bruske and Sommer (1995) applied their

Dynamic Cell Structures algorithm (DCS) to the dataset as

an unsupervised problem, in order to demonstrate the

topology-preserving nature of their algorithm, described in

Section 2. They report that after 196 runs through the dataset

(which contains 962 examples from the two spirals), their

algorithm has learnt a perfectly topology-preserving map of

the dataset, with the two spirals clearly separated. At this

point the network has 198 nodes, since a new node is added

at the end of every run through the training set. We applied

the GWR network to the same problem, the results of which

can be seen in Fig. 8 (aT ¼ 0:8; eb ¼ 0:1; en ¼ 0:01). The

topological function value at the end of training was Fð0Þ ¼

0:0041:

The DCS algorithm, like the GNG, grows slowly. Bruske

and Sommer show that after 80 epochs the DCS has only

just got the shape of the spirals. By way of contrast, after 80

epochs the GWR network has generated the perfectly

topology-preserving map. As usual, the GWR network

grows very quickly when trained on this dataset—all the

nodes were generated by the sixth epoch, and the remainder

of the time was spent removing neighbourhood connections

that crossed between the spirals. It is interesting to note that

the number of nodes generated by the GWR network is of

the order of the number required by the DCS network.

5.4. A multi-dimensional dataset

The dataset shown in Fig. 9 was used by Martinetz and

Schulten (1991) to demonstrate the Neural Gas network. It

Table 1

The number of nodes produced for the squares problem, together with the

number of data presentations required for the network to stop growing for

different values of the activity threshold aT

aT Number of nodes created Number of data presentations

to stop growing

0.8 6 2

0.85 6 2

0.9 6 5

0.95 10 19

0.99 42 55

0.999 204 563

Fig. 5. The Network that Grows When Required learns a dataset that changes suddenly after 8000 data samples (i.e. immediately after the second picture).

Fig. 4. The GNGU learns a dataset that changes suddenly after 8000 data samples (i.e. immediately after the second picture).

S. Marsland et al. / Neural Networks 15 (2002) 1041–10581050



consists of three parts, with three different dimensionalities,

a parallelepiped, a rectangle and a circle with connecting

line. It can be seen that the connections between the network

nodes shadow the topological structure and dimensionality

of the manifold on which the data lies. Datapoints sampled

from this distribution were presented to the GWR network,

with the parameters used being the same as were used in

Fritzke (1995), eb ¼ 0:2; en ¼ 0:006; a ¼ 0:5; amax ¼ 50

and the insertion threshold, aT ¼ 0:95:

It can be seen that the network correctly selects the

correct dimensionality for each part of the space, and

rapidly learns a good representation. The network does not

change substantially at any time after the third figure, when

15,000 data points have been presented.

6. Experimental results—novelty detection

The previous sections have demonstrated that the GWR

network can learn to represent a simple dataset at least as

well as the GNG, and that it can track a dataset that changes

over time, responding faster than the GNGU network. In this

section we apply the network to a real application, that of

novelty detection, and provide comparisons with other

networks.

The problem is one of novelty detection, that is,

recognising that particular inputs to a network do not fit

into the model that describes most of the inputs. Novelty

detection is a very important task. For instance, it can be

used to detect damage to machinery, or potential diseases

from medical data. In addition, it can be used to focus the

attention of a learning agent on potentially interesting

stimuli, while ignoring others. Examples of all three

applications are given in this section.

The GWR network performs novelty detection without

any amendments, since the firing counter describes how

often a node has fired before, and therefore how novel a

stimulus that causes that node to fire is. Neither the GNG nor

RCE networks do this.

In order to use GNG and RCE for novelty detection, a

similar feature was added to them. A counter obeying

Eq. (14) was added to each node of the networks. This

counter did not affect the learning of the weights or

structure; the standard algorithms were used for that.

However, the novelty of a stimulus was recognised when

the value of the counter for the firing node exceeded a

threshold.

There are other possible ways of using these networks for

novelty detection. For the GNG, one could use the error of

the winning node to determine novelty; stimuli generating

sufficiently large errors would be considered novel. Such an

approach is obviously not possible for either the RCE or

GWR networks, since in those networks new nodes are

introduced to represent patterns with high error, so a novel

pattern would immediately become highly non-novel. The

GNG network, however, introduces nodes to support other

nodes with high error rather than to represent patterns

generating high error, so this approach seems feasible.

Unfortunately, error is not a good measure of novelty in

networks that grow, because the size of the error will

naturally reduce as the network grows. The error threshold

would have to change over time to make this work. Thus,

even in the GNG network, use of error as a measure of
Fig. 7. The two-spirals dataset, which consists of data from two interleaved

spirals.

Fig. 6. Evaluation of the two cost measures described in Section 4.3 against the number of data samples for the GNGU and GWR networks while the networks

learn the dataset that changes after 8000 data samples. For both measures the GWR network has lower costs.
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novelty is confounded with the measure that grows the

network, albeit in a subtle way. For this reason, we used the

same approach in the GNG network to recognise novelty as

in the other networks.

6.1. Novelty detection in robot sonar scans

One application of a novelty filter is to recognise changes

in a robot’s perceptions of its environment. Possible

applications of such a system include inspection—training

the novelty filter to recognise all features that are known to

be normal in a particular environment and then detecting

deviations from the acquired model—and selecting places

for the robot to explore. It is generally important that this

can be performed in real time, since the detection of the

novel feature could affect the behaviour of the robot. Further

details are given in Marsland (2001). In the experiments

described here a robot used its sonar sensors to travel

through a short section of corridor sampling the environ-

ment with its sonar sensors and using these as inputs to the

GWR network.

6.1.1. Experimental procedure

The original experiments were performed using a novelty

filter based on the SOM. The results are presented and

discussed in Marsland (2001) and Marsland et al. (2000),

which also describes the data collection process in detail.

The data consists of a number of sonar scans collected by a

mobile robot as it travels along a corridor. Each input vector

is the average of sonar scans taken over 10 cm of travel by

the robot, with the readings of 16 sonar sensors making up

each scan. Data was collected in three different environ-

ments, each of them being 10 m of corridor in the Computer

Science building at the University of Manchester. Environ-

ments one and three are shown in Fig. 10. The second

environment is identical to the first except that a door on the

right hand side of the robot (door D in Fig. 10) was opened,

which changed the perceptions of the robot.

As for previous experiments, the same parameters were

Fig. 8. The GWR network learns the two spirals problem. Note that the learning is unsupervised.

Fig. 9. The GWR network learns a representation of a signal distribution that has three different dimensionalities. It can be seen that the network has learnt a

good representation after 15,000 data presentations, and does not change much after that.
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used for both the GNG and GWR networks. These were:

eb ¼ 0:1 for the winning node and en ¼ 0:001 for the

neighbours. The activation threshold for the GWR was

aT ¼ 0:9; while for the GNG network a new node was

added after every 50 data presentations, which meant that

two nodes were added on each run in an environment.

Tests were made to support the setting of this important

parameter. For novelty detection, where the network

should respond as soon as a novel input is seen, it seems

reasonable to add a new node every iteration (i.e. l ¼ 1).

This means that a new node is added every iteration, so that

the network would represent the data with zero quantisa-

tion error, but would not discover any topological

structure, would not recognise cluster, nor do novelty

detection.

The insertion threshold for the unsupervised RCE

network, which defines the radius of the hypersphere around

each prototype within which a vector is classified as

belonging to that class, was set to be 0.05. The RCE

network does not have a learning rate as the prototype

vectors do not move. If the current input is not matched by

any of the classes then the input is used as a prototype vector

for the new class that is created. The RCE network has no

concept of neighbours, just a set of prototypes, with each

prototype representing a class.

The experiments demonstrate that the network perform-

ing novelty detection can learn a representation of one

environment and can then detect deviations from that

representation while exploring in another environment. The

same experiments were repeated three times, first using

the novelty filter based on the GNG network, then using the

novelty filter with a GWR network, and finally the novelty

filter based on the RCE network was used. In the first two

cases, the network was initialised with two randomly

positioned nodes. The RCE network starts off without any

nodes in the map. Then, three runs were made along the

10 m of environment A (shown at the top of Fig. 10), with

the network generated at the end of one run saved and

reloaded at the beginning of the next run. For each of the

three algorithms this generated a network that could be

considered to have learned about environment A. The

evaluation of the novelty at each point in the environments

for each of the three algorithms is shown in Fig. 11. The

higher the spike, the more novel the perception at that point

is considered to be.

This trained network was then used while the robot

explored the same environment, but with the door to the

right of the robot (door D in Fig. 10) opened, so that the

sonar perceptions at that point were very different. The

results of this are shown in Fig. 12. Finally, the networks

trained in environment A were applied in a second

environment, labelled environment B in Fig. 10. This is a

very similar environment in the same part of the building,

and the results can be seen in Fig. 13.

6.1.2. Discussion of the results

The results, which are given in Figs. 11–13 show how

each network evaluated the novelty of the current percep-

tion with respect to previous perceptions of the robot. In the

graphs, a high spike means that the perception was very

novel, and short spikes means that the perception has been

seen often.

Fig. 10. The two environments used for data collection for the novelty detection problem. Data was also collected in environment A when the door to the right

of the robot (door D) was open. This is called Environment Ap in the discussion. The robot travelled along the corridor, storing a sonar scan of the environment

every 10 cm.
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A comparison between the GNG, GWR and RCE

networks for initial training is shown in Fig. 11. Here the

networks were randomly initialised, so it would be expected

that the perceptions will be novel initially and then learnt

fairly fast, since much of the environment is wall. The

perceptions that are different, such as the doorway, should

produce some novelty at these points. This is what happens

for the GWR network, shown in the centre of the figure.

However, the GNG network cannot do this as there are only

two neurons in the network until after the doorway is

perceived, so the network cannot show this novelty. The

RCE network (on the right of the figure) finds many things

novel. Indeed, this network take a very long time to train.

The insertion threshold for the RCE network is difficult to

set because it controls the behaviour of the network very

strongly. The value of 0.05 used here was chosen so that the

network did find the perceptions of the doorway to be novel.

However, for this sensitivity the network does not appear to

be robust in the face of noise, especially not at the start of

each run where the robot may be positioned slightly closer

to or further away from the wall than in the previous run.

Fig. 12 compares the results for the networks when the

inputs are the perceptions of the robot in environment A, but

with the door to the right of the robot open after training

with the door closed. For the network output to be

considered useful, the network would have to highlight

the area of the door as novel, but not any other part of the

corridor, which is otherwise identical. This is the case for

the GWR network, but the constraint of only adding neurons

at predefined intervals limits the performance of the GNG

network, which instead highlights novelty when a new node

is added, which is after the novel perceptions are actually

seen. The burst of novelty seen in the second run by the

GWR network is the result of a very thin crack in the wall in

environment A. Mostly the sonar sensors do not detect this

crack, but it appears that they did in this case. The RCE

network also detects the open doorway as novel. However, it

also finds the early perceptions of the robot to be novel even

though they are identical to those seen before. This is

probably because the network is very sensitive to noise and

the distance of the robot from the wall varies between runs.

When the network trained in the first environment is

moved into the new, but similar, environment B, it could be

expected that no novelty should be seen as the networks

have already seen all possible perceptions. However, the

experiment reported in Marsland et al. (2000) for the SOM-

based novelty filter showed that some parts of this

environment were considered novel, because the doorways

are more deeply inset than in environment A. The further

burst of novelty at the end of environment B is caused by the

boxes that project from the wall at that point.

The middle of Fig. 13, which shows the results for the

GWR network, provides evidence that this is what

happens, and the network finds the doorways novel, but

Fig. 11. The GNG, GWR and RCE networks (left to right) learning about environment A. The networks had no initial training. The positions of the spikes are

lined up against the figure of the environment.

Fig. 12. The GNG, GWR and RCE networks (left to right) learning about environment A after the door has been opened, and after initial training in

environment A with the door closed.
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not the other parts of the environment. The RCE network

also finds these perceptions novel, although again it has

difficulty with the perceptions of the wall early on in

each run. However, the GNG network (on the left of Fig.

13) again fails to detect novelty in those places where

the perceptions are actually novel, because there are no

spare neurons for this task.

Fig. 14 shows how the average output of the GWR

novelty filter decreases as the robot makes several passes

through an environment. It can be seen that after learning in

environment A, environment Ap (environment A, but with

door D open) does not have very much novelty, environ-

ment B has more, while a completely different environment

(environment C on the right of the figure, which is a wider

corridor in a different part of the building) has as much as

environment A did initially. However, in all cases the filter

learns quickly and after five runs no novelty is found in any

of the environments.

Of the three networks tested, only the GWR network has

a steady progression between a stimulus being novel and not

novel over several runs in an environment. This is largely a

function of the neighbourhood connections, which means

that nodes that recognise similar features are neighbours, so

that the firing of one node means that the firing counter of

the other nodes also reduces a little. The RCE network does

not have these neighbourhood connections, which, coupled

with the fact that the prototype vectors do not move after

they have been placed, makes the network susceptible to

noise.

6.2. Two other datasets

In this section the GWR network is tested on two datasets

that are publicly available via the internet. The datasets were

used by Campbell and Bennett (2000) to test their novelty

detection technique that is based on modelling the support

of a data distribution using a Support Vector Machine

(SVM). This network uses a soft margin classifier with a

Gaussian kernel (equivalent to an RBF network)

Kðxi; xjÞ ¼ e2lxi2xjl=2s2

ð27Þ

to generate a hypersphere in feature space that contains most

of the data. The novelty detection is based on the idea of Tax

and Duin (1999).

The datasets are described below. They demonstrate the

two areas where novelty detection is typically used—

medical diagnosis and fault detection. These application

areas are suitable because in both cases there are typically

many examples of healthy data, patients whose tests do not

highlight illnesses and machines working normally, and

relatively few of problems. In addition, it is not known for

definite that all possible manifestations of unhealthy data

are known and the main purpose of the data is to avoid false

negatives—not detecting possible problems. These are the

circumstances under which novelty detection is the method

of choice.

The following sections describe the datasets and the

approach to training and testing that is used. The results

achieved by the GWR network are given, as are those of the

SVM novelty filter.

Fig. 13. The GNG, GWR and RCE networks (left to right) learning about environment B after initial training in environment A.

Fig. 14. Graphs showing how the total amount of novelty in an environment decreases as the GWR-based novelty filter learns over three runs in each of a pair of

environments. Environment Ap is the same as environment A, but with a change made, environment B is similar, and environment C is very different.
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6.2.1. Dataset one: medical diagnosis

The first dataset is the biomed dataset available at http://

lib.stat.cmu.edu/datasets (Cox, Johnson, & Kafadar, 1982).

In total, 209 observations are given, of which 15 have one or

more of the four attributes (measurements on blood

samples) missing, and were therefore discarded. Of the

remaining 194, 127 were normal, i.e., healthy data, and the

remaining 67 contained one or more abnormalities,

signifying the presence of a genetic disease.

Following the approach of Campbell and Bennett (2000),

100 randomly chosen normal observations were used as a

training set and the remaining 27 normal observations

together with the 67 inputs that should be detected as

abnormal were used as a test set.

The results reported for the kernel classifier were very

good- their best result was that 57 of the 67 abnormal

inputs were correctly labelled and only two of the normal

data were mislabelled as abnormal. The GWR network

performed similarly. For a value of the insertion threshold

of aT ¼ 0:92; 56 of the 67 abnormal inputs were high-

lighted correctly, and only two of the normal data were

misclassified. This is very similar to that of the kernel

machine. Unfortunately Campbell and Bennett (2000) do

not report which datapoints were misclassified, and there-

fore it is not possible to see if the same points were found by

both filters.

Campbell and Bennett (2000) show how varying the

variance s in the RBF kernel that was used (Eq. (27)) affects

learning. For small s; all the test data are labelled as

abnormal, because a small Gaussian is centred on each

training point, with each point requiring its own separate

Gaussian cluster to represent it. This is what happens in the

GWR network when the insertion threshold is high. As the

insertion threshold decreases, or equivalently s increases,

generalisation gets better, but then abnormal inputs that are

close to clusters can be missed. Therefore there is a trade-off

between false positives and false negatives. As was

discussed previously, false positives (that is, points

incorrectly labelled as abnormal) are less of a problem,

providing there are not too many of them, in which case the

classifier is useless. However, the classifier should highlight

all the abnormal inputs. Neither novelty filter manages to

detect all the abnormal inputs on this particular dataset,

although they both get fairly close.

6.2.2. Dataset two: fault detection

The second dataset is available at http://www.brunel.ac.

uk/research/cnca/sida/html/data.htm as part of the EPSRC

Structural Integrity and Damage Assessment (SIDA) net-

work. The data consists of several sets of tests on ball-

bearing cages. These are vital components of many

machines, and therefore it is important to detect faults in

them before use.

Every instance of data consisted of 2048 acceleration

samples from a Bruel and Kjaer vibration analyser. A

discrete Fast Fourier Transform was used to preprocess the

data, resulting in 32 attributes for each input vector. The

data was split into five types:

Type Description Number of

instances

Normal New ball-bearings Two sets of 913

Fault 1 External ring completely broken Two sets of 747

Fault 2 Basket damaged, one degree

of freedom

Two sets of 996

Fault 3 Half of basket elements destroyed,

four degrees of freedom

One set of 996

Fault 4 No visible damage, but runs loosely One set of 996

The experiments described in Campbell and Bennett

(2000) used the first set of data from each of the first three

categories (normal, faults 1 and 2) to train the classifier, and

then used the second set of data in each of these categories

for testing. Finally the faults 3 and 4 sets were used to test

the novelty detection performance. This tests more than just

the novelty detection ability of the network, since it also

tests the classification performance of data from the three

categories that were used in training.

The results reported by Campbell and Bennett (2000)

were more concerned with the correct classification of the

test data from the first three categories, rather than the

novelty detection performance. They report 1.3% error on

the data from the normal data, 0% error on fault 1 and 46.7%

error on fault 2, but only found 28.3% of the fault 3 data and

25.5% of the fault 4 data to be abnormal.

The results of using the GWR network are the opposite to

those of the SVM approach. Rather than learning a good

representation of the trained classes, but misclassifying

many of the abnormal inputs as familiar, the GWR network

performs very well at recognising abnormal inputs, but finds

many of the test elements of the familiar classes to be

abnormal too. Fig. 15 shows how the performance of the

GWR network changes for familiar and abnormal test data

as the insertion threshold aT varies. It can be seen that as the

insertion threshold gets closer to 1, so the categorisation

performance of the familiar data gets better, but at the cost

of missing some of the abnormal inputs.

Fig. 15. The error rate against insertion threshold for normal ball-bearing

test data (solid line) again abnormal test data (dotted line) with the GWR.

S. Marsland et al. / Neural Networks 15 (2002) 1041–10581056

http://lib.stat.cmu.edu/datasets
http://lib.stat.cmu.edu/datasets
http://www.brunel.ac.uk/research/cnca/sida/html/data.htm
http://www.brunel.ac.uk/research/cnca/sida/html/data.htm


When the insertion threshold is aT ¼ 0:8 the GWR

network finds 95.4 and 95.1% of faults 3 and 4 data to be

abnormal, but misclassifies as abnormal 37.8% of the good

data, 40.3% of fault 1 and 43.8% of fault 2. Only for the fault

2 data are the SVM data similar. However, for novelty

detection it is more important to find the abnormal entries—

although the number of familiar perceptions misclassified as

abnormal is high, this is less important.

7. Conclusions

This paper has presented an algorithm that describes a

new type of self-organising growing neural network. The

new network has similarities to growing networks such as

those developed by Fritzke, such as the GNG, in that it

maintains a set of neighbourhood connections between

nodes that match similar perceptions. However, unlike those

networks, the new network adds neurons whenever the

current input is not matched sufficiently well by any of

the current nodes. For this reason we call the algorithm the

‘Grow When Required (GWR)’ network.

This change in the way that nodes are added means that

the behaviour of the network is very different to that of the

GNG. In particular, the network responds very quickly to

changes in the input distribution, adding lots of new nodes,

and then stops adding them when each new input is already

matched to the required accuracy. This means that the

network is particularly suitable for learning about dynamic

distributions, since each time the data distribution changes a

new set of neurons will be grown to match the new data. A

very simple example of this has been demonstrated in this

paper, see Section 5.

We have also demonstrated that the GWR network is

perfectly topology-preserving in the sense of Bruske and

Sommer (1995). That is, the network preserves neighbour-

hood relations in the data so that inputs that are neighbours

in the input space are mapped to neighbouring nodes in the

map field. We described two cost measures that evaluate

the performance of the network and used them to show how

the network performed on a number of datasets.

The learning ability of the new network has been

compared to two other growing networks, the GNG,

which also maintains neighbourhood connections, but only

adds nodes into the map space every time the number of

iterations is an integer multiple of some predefined constant,

and the unsupervised RCE network, which does not have

any concept of neighbourhoods, but adds a new class

whenever none of the classes previously defined match the

current input to some specified accuracy. The GWR

network also learns a representation of the input faster

than the other networks.

The three networks were applied to a novelty detection

task, where the network had to learn a representation of an

environment, evaluating each perception online with respect

to the representation as it was learned. The results show that

the GNG network is not suitable for this type of task, as

there are no spare nodes in the network at the time when the

novel input is perceived. It was also found that the RCE

network was very susceptible to noise, and that the

parameter that controlled how similar inputs had to be to

a prototype vector was difficult to set. The new GWR

network performed better at this task than the other two,

detecting those features that were novel without being too

susceptible to noise. We then applied the network to two

other novelty detection tasks, the first in medical diagnosis

and the second in machine fault detection. The comparison

in both of these cases was a Support Vector Machine-based

novelty detector. The results showed that for these examples

the GWR network was comparable for the first task and

performed better at novelty detection (although worse at

classification) than the Support Vector Machine for the

second task.

Future work will examine the topology preservation

capabilities of growing networks in more detail and consider

the performance of the GWR network when used to learn

about more complex dynamically changing datasets. The

use of the GWR network for clustering will also be

investigated.
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